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1 > a22a1-1 / 2 + %T 
We note that for z = 0 this solution becomes the solution 

problem [ 1). 

785 

of the “isotropic missiles” 

C. If the pursuer is subject to velocity control and the evader to acceleration 
control, the equations of motion and the functions R, Q are of the form 

* . 
rl =al, r, =w,, *- w, -aa,, I 81 I < aI? I at I S a, 

R (0 = r,” + Wt” (T + z) - rlo, Q (T) = I+ alT - a, (2’ + z)” 12 
In this case situations such that the evader can escape capture exist for all problem 

parameters. 
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The necessary and sufficient condition under which the Bellman function for the time- 
optimal process problem belongs to the class of functions satisfying the Lipschitz con- 
dition is developed. 

1, Let a controlled process be described by the system of equations 

dz / cl?? = f (z, u) (1.1) 

where z and f are n-dimensional vectors and u is an r-dimensional control vector. 
Let us suppose that the set U of permissible values of the controlling functions tl = 

= u (t) is a nonempty compact subset of the r-dimensional Euclidean space E,. As 
our permissible controlling functions we consider the measurable functions u = u (t) 
with values in U. In addition, we assume that the vector function f (5, u) is defined 
and continuous in both its variables on the set &, X U and that it satisfies Lipschitz’ 
local condition in z with a constant independent of u. The purpose of control is to bring 
the system to the position 5 = 0. 

LetG(<?‘)b h e t e set of all points z. E E,., from which it is possible to reach 
the origin in a time smaller than T. In other words, z. E G (< T) means that there 
exists a permissible control u = u (t) defined for t E IO, ~1, z < T such that the 
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solution 2 E x (4 x0, u (t)) of Eq. (l.l).with the initial data (0, z,,) which corresponds 
to this control has the property x (‘c, x0, u (t)) I 0. 

bet xEG= UG (<Z’), (0 < T < cm). Then it is possible to reach the origin 
from the point X in a finite time z. We denote the set of all such 7 by A (2). 

The Bellman &ncticn (for tbe time-optimal process Foblen) is the function 

T = T (x) = inf z (r E A (3) 
defined for x E G. 
AS oae of the characteristics of system (1.1) we take 

1 

00, ifGisbounded 
T 

OS ~~mT(4&+-+~~ x~G,ifGisunbounded. - (1.2) 

We can show @] that To is the exact upper bound of all T for which G (< T) is 
bounded. 

2. We know that the Bellman equation for the time-optimal process problem. i. e. 

mia~.f(3, U) = - 1 (u=Uu) @*I) 

was derived under very rigid a priori assumptions concerning the function T = T (z) 
(it was required that T (z) be continuous and that it have continuous partial derivatives 
everywhere except at the point x s 0) @> In this connection it is inter-g to verify 
these assumptions on the basis of Eq. (1.1). Some theorems on the continuity of the func- 
tion T =E T (x) were derived in [3, 41. Specifically, paper [4] contains the necessary 
and sufficient conditions of continuity of the Bellman function in the nei@orbood of 
the origin in the case where f (x, u) is holomorpbic in 2 in the neigbborbood of the 
origin (n = 2) and where the set U consists of a finite number of vectors. 

9. In this section we prove an ancillary proposition which is also of independent 
interest. 

Lemma 3.1. Let ul, h, . . . . u, E U be such that the vectors f (0, ~3, 

f (0, 111). -9. f (09 u,) constitute a positive basis p]. System (1.1) is then locally 
controllable and tbe inequality T(x) G Cl/H (3.1) 

hoIds in some neighborhood of the origin, Here 1 x !I is the Euclidean norm of the vec- 
tor x and (: is some constant, 

P r o o f. Let us introduce the functions (3.2) 

yL (Zl) = z (Zl, 0, Ul), Xi (t1,ts) = t (Z, XI, US), . * . x, (Zl, ‘F$, . * * z,,,f = = N,, x,,, %J 

To prove the lemma we need merely show that the equation 

2 = x, (‘F) = x,, (%,%. l .Zm) 
has a nonpositive solution 1 = r(t) which is defined in some neighborhood of the origin 

andsaaftestheineqt=Iity 1~(~)p+~(~)(+... +lr,~~)l(cata 

where c is some constant. Recursion relations (3.2) readily yield the following expns- 
sions for X,(r) : xm w - (A + 440 W) ‘F (3.3) 

A = 0, a),...ftO, urn)), AdO) = 0 

where Ao(?) is a continuous matrix. 
Let us prove the existence of a continuous vector b(z) with negative components 
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larger in absolute value than any number M > 0 which satisfies the equation 

(-4 + R,(T))b(r) = 0 (3.4) 

By one of the properties of a positive basis p] there exists a vector b0 with negative 
components larger than M + 1 in absolute value which satisfies equation 

Ab,=O 

Let us attempt to find the solution of Eq. (3.4) in the form 

b(z) = bo + AW, A&O) = 0 

We then obtain the following equation for the vector Ab : 

(A + Ao(zW + AoWo = 0 (3.5) 

Since the rank of the matrix A i- Ao(T) for a sufficiently small 1 ‘c 1 is equal to n,it 
follows that Eq. (3.5) defines the implicit continuous function 

Ab = Ah(z) 4 0 as 740 

This implies that for a sufficiently small 1 7 I the vector b(z) = b. + Ah(r) is conti- 

nuous and its components do not exceed --lil. 
Now let us consider the equation 

(A + Ao(z))B = x, IIXII-1 (3.8) 

We seek the solution of this equation in the form 

8(%X) = B(r) + c(r, X) 

where b(r) is some solution of Eq. (3.4). Then c(z, X) satisfies the equation 

(A + AoWh Xl = X (3.7) 

To be specific, let A -I- A,(r) = (Al(~), MC)), where A,(r) is a nonsingular square 
matrix. The solution of Eq. (3.7) in this case is the vector 

c (?, X) = c A1-1:)XJ 
For -6 < ri c 0, where 6 is sufficiently small, 11 X 1 = i, and the vector function 

c(z, X) is continuous and bouded, 

Ic,(c=)I<M (i-l... m) 

By what was proved above, b(z) can be chosen in such a way that the vector 

B(t, X) = b(r) + ~(7, X) 

has negative components /Ii. Moreover, there exists a constant K such that for 

- 6 < ?* ( 0, a x II = 1, 1 pi (7, X) 1 ( K w=l...W 

Finally, let us consider the equation 
r = PB(‘E, X) (3.8) 

where 0 < p < 6/K. The mapping Q(t) = pB(r, X) for fixed p and X is continuous 
and maps the cube I-6 Q zi f 0) into itself. According to the fixed-point theorem 
(e. g. see Is]) Eq. (3.8) has the negative solution r = r*(p, X). By the definition of 
the function B(z, X) we have 

(A + A,(z+))r* = pX 

From this it follows that for 11 z I< 6/K the equation 

X&5) = 2 
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has the negative solution z = z(z). Estimate (3.1) follows from (3.8). Lemma 3.1 has 
been proved. 

We note that in proving Lemma 3.1 we used, essentially, only the continuity of the 
function f (z, U) in 2. If the right sides of system (1.1) are continuously differentiable 
in t, Lemma 3.1 follows from the results of @I. However, the method of proof used in 
this study does not yield estimate (3.1). 

Further on we shall need the following lemma. 
Lemma 3.2. Let U= EL (t) be a permissible corm01 defined for t E [O, Tl 

and z (T, q,r u (t)) = 0. Then for any e > 0 there exists a piecewise-constant con- 
trol u = U (t), t E IO, T] and a vector zo’ with the property 

t (T, z;, U 0)) = 0, Hz0 - 5; 11-c 8 

The proof of Lemma 3.2 follows from the theorem on the approximation of measurable 
functions by piecewise-continuous iimctiom and &om the ~urxweil-Vorel theorem on 
the continuous dependence of a solution on a parameter @]. 

4, Theorem. The function T = T (5) sat&&s the tip&&z cat&ion in some 
neighborhood of the origin if and only if z = 0 is an int6riof point of the convex ene- 
lopeoftheset 

F = (f (0, u), u E U} 
Proof. Sufficiency. Let us show that there exist ul, . . . . U, E U such that 

the vectors f (0, ur) . . . f (0, u,) constitute a positive basis. To this end it is sufficient 
to prove that if Zi . . . z, form a basis in the space E,, then each of the vectors & zs, 
..., & 5, is expressible as a linear combination of a finite number of f (0, ui) with 
nonnegative coefflciena. For example, Iet us consider the vector zr. By the hypothesis 
of the theorem there exists a paritive number h such that hz, E conv F, where the 
symbol conv F denotes the convex envelope of the set F. This means that there exist 
constants a, . . . as such that 

o<a+<i, a,+ . . . -$akzl 

hzi = airi f . . . + akrk, ri E F 

Hence, there exist ul, . . . uk such that 

Z,=y,f(O, u1) + . . . +Ykf(Oc uk) 

Similar expressions are readily obtainable for the vectors 

- 21, 3 zs, ..* * 5” 

Let u i, . . . . u,be such that the vectors f (0, uJ, . . . f (0, u,,J constiwt& a pitive 
basis. Lemma 3.1 then implies that system (1.1) is locally controllable and that there 
exists a neighborhood S? (0) of the origin with the radius q such that for x g 8, (0) 
we have the estimate 

T (5) S C II 3: II (4.1) 
Now let us show that the function T = 2’ (x) satisfies the Lipschitz condition in the 

neighborhood of every point x0 G G (< To). Let T < &bC such aat x0 E G 
(< T). Then T is finite and the closure of the set G (< 2’) is complict (54f Sect. 1). 
BY virtue of our assumptions concerning the function f (5, u) there exists a CoRsfant L 

such lzhat tie inW_m 1 f (x1, u) - f (x,, u) 1 & L R x1 - zs 1 
is valid for all xsxs E G (< T) and u E U. 

Let us choose 6 > 0 in such a way that 
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SE (x0:0) c G (< T,), 6 <1/a min (q, 4 e-LTV TI < T 
Here d is a positive number so small that the &neighborhood of the set T = T (z) 

does not intersect the set 6 (< T,). We can show that for any 51, 9 E & (50) we 

have the inequality 1 T (x1) - T (x2) 1 < M 11 x1 - x2 Ii (M = const) (4.2) 

In fact, let us consider + q E Ss (zO). To be specific, let T (~3 > 2 (5). 

For any c., 0 < E < T, - T (+) there exists a permissible control U = UC (t) 

defined on [0, T,] such that x (T,, 5, uc (t)) = 0 and T, - T (q) < E. It is 
clear that in this case 

5 (G 51, uc (t)) E G (< T,) 

for t E [0, T,]. Now let us consider the solution z = z (t, zl, U, (i!)) and show that 

5 (t, 5, uc (t)) f G (< T> 

for t E. [0, T,]. In fact, assuming that the opposite is true, we find that there exists an 

instant T” < T, such that T (x (T”, x,, uL (t))) = T and that 

a: (t, 51, UL (0) E G (< T) 
for t E 10, Tl. 

The following estimate is then valid for t E 10, T”]: 

[lx (4 Xl! UC W) -x(4 x2, UL(t))ll~1151-5911eLT <d 

This implies that x (T”, 1;, ur (t)) belongs to the d-neighborhood of the set T (x)- 
= T, which cannot be true by virtue of our choice of the number d. Thus, 

2 (t, ~1, uc (0) E G (< T) 
for all t E [O, T,l. 

Then (4*3) 
Ux(T,ls,,uE(t))-x(T,,xa,u,(t)H=Il~(T,,s~, uc(t))~&jx1-x9jeLT<q 

Let us estimate the difference 

0 < T (xl) - T (xs) < T (xl) - Tc + d G T (x (Tc, 31, u, (t))) + e 

Since 5 (T,, sl, uL (t) EZ s,, (0) by virtue of (4.3). it follows by (4.1) that 

I T (xl) - T (5%) I SC us (T,, 51, u, (9) - x (To x29 UC (91 + 

+k3&CI/x1--zg~eLT+e 
Since e > 0 is arbitrary, we set M = C&T to obtain inequality (4.2). Sufficiency 

has been proved. 

,Necessity. Let the function T = T (x) satisfy the Lipchitz condition in the 
neighborhood of the origin, but let x = 0 not be an interior point of conv F. Then 
there exists a vector a, 11 a 11 = 1 such that (cc, r) 2 0 for any vector r E conv F. 
Since the function T = T (x) is continuous in the neighborhood of the origin, then the 
limit relation T (xlr) --f 0 is valid for zk = Pka, & -+ 0 , k --t 00. 

By Lemma 3.2 there exist piecewise-constant controls u = + (t) defined for 

t E [O, T,J and vectors 56’ such that 
, 

x (TRv xk’, uk (c)) = 0, 1 T (xk) - Tk I < pk2v 

Then 
Ijxk’ - xk II< Pka (4.4) 

xk ’ = x,, (Z,(k) . . . T’-“:) = x,, (r(k)), 

1 Tck) 1 = 1 Z&‘) 1 i_ . . . + 1 Tg’, 1 = T,, 7p < 0 
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where the funcMons &, are deflned in Lemma 3.1. Makiug 
obtain the expression 

xk* = -- TR rk - 
i 

nse of (3.3), we readily 

r, f Conv P 

or 
-a+ 

Xk - Xkf Tk se-.--- r,- 

( 

A0 (z(k)) T(k) 

Pk Pk Tk 
(4.5) 

since T = T (z) satisfies the Lipschitz condition in the neighborhood of the origin 
and since 2’ (0) = 0, then T (zk) ,( Cpk, making use of (4.4), we readily infer from 
this that TI, < Mpg. Recalling~(4.4) and (4.5). we obtain 

rk +O, ibk-s’kil -0, as k-cw 
Pk 

iiAotti;) ‘(‘)b ~ 0 

k 

Hence, there exist 0 < A$, < M and r. E COW P such that --a = M$,. 
3~~-rnulM~~ing the latter equaMon by cc, we obtain (a, ra) ( 0, which contradicts 
the choice of the vector a. Necessity has been proved. 

Note 4.1. The condition formulated in the theorem is very restrictive. It is not 
difficult tn prove that this condition is fulfilled for the linear systems 

dz -=Ax+Ru, t4a 

onry if f 1 n and det B $0. 
Note 4.2. The proof tif the theerem implies that the funcrion T =r; T (cc) saMs- 

fies the Lipschitz condition in the neighborhood of every point of the domain G- (< To). 
In particular. for linear systems with f = n, det B # 0 it satisfies the Lipsohitx condi- 
tion in the neighborhood of every point of the controllability set. 

8, Now let us set down some remarks on the diffe~nMabi~~ of the Bellman ACME 
T = T (x). 

1.. The function T = T (z) cannot be differentiable at the point x ~=2: 0 for 
locally controllable systems. In fact, the opposite statement would imply that 
dT (0) /ok - 0, which contradicts the self-evident inequality a 11 x [j &T (s),a.> 0, 

-2’. The fu&Mon T = T (z) can have bounded ffrst parMa derivaMves in some 
neighborhood of the origin (except at the origm itself) only if the paint x = 0 is an 
interior point of COIIV F. 

3.. The hypothesis of the main theorem of the present-study does not imply the 
differentiability of the funcMon T = T (5) in some neighborhood of the origin (except 
at the origin itself), In fact, for the system 

dx f &? = Ul, ~~~~=~ (5.1) 

in which the vector u = (uL, z+) assumes the values (i- I,@, (-l,O), (0, -i-l), 
(07 -i}, the Bellman function is given by 

T (~9 Y) = I 5 I + I Y I 

and is not differentiable at the coordinate axes. even though{z = 0,y = O> E conv Fi, 
If however we assume that the restrierion on n in system (5.1) has the fortn~[~ 11 < 

C l,then T (x, y) = l/;cs 
From this we see that this function is differentiable everywhere except at the origin. 

4’. Let us consider the system 
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dx 2% = up (9 + Y2), -yg- = Ulr & ?(ur2+u221 Q 9 

It is easy to show that the point z = 0, y = 0 is not an interior point of the set 
F : {I z I < 1, y = 01, but that the Bellman function satisfies the Lipschitz condition in 
the neighborhood of every point of space except at the origin. 
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The problem of bringing a system with lag to a specified position by suitable choice of 
the initial conditions is considered. The conditions of solvability of this problem are 
formulated in terms of the coefficients of the eqautions. 

For simplicity we shall consider equations with constant coefficients defined in the 
n-dimensional Euclidean space &, , 

z.(t) = 5 sft -- IQ> Ri + z(t -h) R” i_ f (d), t>o (1) 
id 

where J: (t) is an n-dimensional vector. We assume that the ooefftcients of Eq, (1) satis- 
fy the following Conditions (A): the lag constants hi are such that h, > h,_, > . . . 
. . . > h, > 0, that the constant h > 0, that the continuous function f (t) assumes 
values from the space E ,,, and finally, that Bi, i = 0, . . ., m, are square n X n 
matrices with constant elements. We also stipulate that all the vectors from E,ocurring 
below are to be regarded as vector rows ; we denote the j th coordinate of a vector iiom 
E, bv the same letter as the vector with the subscript j ,. For example, the vector s(t)o: 
= ($1 (t), - * -9 %-n(t)). 


